Lippert, B., Lock, C. J. L. \& Speranzin, R. A. (1981a). Inorg. Chem. 20, 808-813.
Lippert, B., Lock, C. J. L. \& Speranzini, R. A. (1981b). Inorg. Chem. 20, 335-342.
lippert, B., Thewalt, U., Schollhorn, H., Goodgame, D. \& Rollins, R. (1984). Inorg. Chem. 23, 2807-2813.
lock, C. J. L., Speranzini, R. A. \& Powell, J. (1976). Can. J. Chem. 54, 53-58.

Schollhorn, H., Thewalt, U., Raudaschl-Sieber, G. \& Lippert, B. (1986). Inorg. Chim. Acta, 124, 207-211.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, J. M. \& Hall, S. R. (1983). XTAL System of Crystallographic Programs. Computer Science Technical Report Series TR-1364. Univ. of Maryland, College Park, Maryland, USA.

Acta Cryst. (1988). C44, 614-616

Structure of a New Polymorphic Form of Tris(cyclopentadienyl)lanthanum(III)

By J. Rebizant and C. Apostolidis
Commission of the European Communities, Joint Research Centre, Karlsruhe Establishment, European Institute for Transuranium Elements, Postfach 2340, D-7500 Karlsruhe, Federal Republic of Germany

M. R. Spirlet

Physique Expérimentale, B5, Université de Liège au Sart Tilman, B-4000, Liège, Belgium
and B. Kanellakopulos
Institut für Heisse Chemie, Kernforschungszentrum Karlsruhe, Postfach 3640, D-7500 Karlsruhe, Federal Republic of Germany
(Received 5 October 1987; accepted 25 November 1987)

Abstract

La}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3}\right], M_{r}=334 \cdot 20\), monoclinic, $P 2_{1} / c$, $a=15.237$ (2), $b=9.790$ (2), $c=16.721$ (4) $\AA, \beta=$ 93.93 (3) ${ }^{\circ}, \quad V=2489(2) \AA^{3}, \quad Z=8, \quad D_{x}=$ $1.784 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Мо $K \bar{\alpha})=0.71073 \AA, \quad \mu=$ $3.4171 \mathrm{~mm}^{-1}, \quad F(000)=1296, \quad T=295(1) \mathrm{K}, \quad R=$ 0.028 for 2129 observed reflections. Each La atom is η^{5} bonded to three cyclopentadienide rings and η^{1} bonded to a ring of an adjacent $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{La}$ molecule. This sharing of one C atom between the molecular units produces zigzag polymeric chains along the b axis of the unit cell.

Introduction. Molecular and crystal structures of a number of tris(cyclopentadienyl) complexes of the lanthanoids, $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Ln}$, have been reported in the literature. They show various polymeric arrangements of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Ln}$ units. The first (rather inaccurate) structure of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Sm}$ (Wong, Lee \& Lee, 1969) revealed a complex polymeric chain structure in which each metal ion forms contacts with four disordered rings. $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \operatorname{Pr}$ (Hinrichs, Melzer, Rehwoldt, Jahn \& Fischer, 1983) also exhibits an infinite chain arrangement but each Pr ion is η^{5} coordinated to three close-lying $\mathrm{C}_{5} \mathrm{H}_{5}$ ligands and η^{2} coordinated to a fourth bridging $\mathrm{C}_{5} \mathrm{H}_{5}$ ligand. The La derivative (Eggers, Kopf \& Fischer, 1986) was found to be isotypic with $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Pr}$. The structures of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Er}$ and its isotype $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Tm}$ (Eggers, Hinrichs, Kopf, Jahn \& Fischer,
1986) in contrast shows molecules containing just three $\eta^{5} \mathrm{C}_{5} \mathrm{H}_{5}$ ligands bonded to the metal ion.
On the other hand, $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Lu}$, which is isotypic with $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Sc}$ (Eggers, Schultze, Kopf \& Fischer, 1986), shows an infinite chain arrangement in which each Lu atom is bounded in a pentahapto fashion to two rings and in a monohapto fashion to two other bridging rings.

A novel experimental technique of preparation allowed us to obtain single crystals of a polymorphic variety of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{La}$. Its characterization by X-ray diffraction is reported here.

Experimental. Tris(cyclopentadienyl)lanthanum was prepared under argon atmosphere, by reaction of (cyclopentadienyl)potassium with lanthanum trichloride in tetrahydrofuran. The THF adduct was removed under controlled conditions [10^{-4} torr ($\sim 10^{-2}$ Pa), 363 K l . Colourless prismatic single crystals obtained by extraction with n-pentane followed by recrystallization. Crystals sealed in thin-walled glass capillaries under argon. The specimen selected for X-ray analysis was $0.25 \times 0.25 \times 0.30 \mathrm{~mm}$.

Intensity data recorded on an Enraf-Nonius CAD-4 X-ray diffractometer, graphite-monochromated Mo $K \bar{\alpha}$ radiation. Cell parameters refined by least squares from angle data of 25 reflections. Space group unambiguously determined from systematic absences. 3632 unique reflections measured ($\theta-2 \theta$ scan mode) in range
(c) 1988 International Union of Crystallography

Table 1. Atomic positional and isotropic thermal parameters (\AA^{2}) with e.s.d.'s in parentheses

$B_{\text {eq }}=\frac{4}{3}\left[a^{2} B(1,1)+\right.$		$\begin{aligned} & B(2,2)+ \\ & \beta \mathrm{B}(1,3)+b c \end{aligned}$	$\begin{aligned} & 3,3)+a b \\ & x(2,3)] . \end{aligned}$	$\gamma B(1,2)+$
	x	y	z	$B_{\text {eq }}$
$\mathrm{La}(1)$	0.33659 (2)	0.23895 (4)	0.81940 (3)	1.904 (9)
La(2)	0.16422 (3)	0.74114 (4)	0.91531 (2)	1.825 (9)
Ring A				
C(1)	0.2404 (5)	-0.0082 (8)	0.8436 (5)	3.7 (2)
C(2)	0.2973 (6)	0.0107 (8)	0.9143 (6)	5.1 (2)
C(3)	0.2647 (6)	0.1220 (8)	0.9577 (5)	5.2 (2)
C(4)	$0 \cdot 1882$ (5)	0.1708 (9)	0.9108 (5)	4.5 (2)
C(5)	0.1738 (5)	0.0948 (9)	0.8434 (6)	4.7 (2)
Ring B				
C (6)	0.5202 (5)	0.187 (1)	0.8254 (6)	5.7 (3)
$\mathrm{C}(7)$	0.5132 (5)	0.327 (1)	0.8199 (6)	$5 \cdot 3$ (2)
$\mathrm{C}(8)$	0.4841 (5)	0.3716 (9)	0.8906 (6)	5.6 (2)
$\mathrm{C}(9)$	0.4712 (5)	0.257 (1)	0.9442 (5)	8.0 (4)
C(10)	0.4957 (5)	0.1420 (9)	0.8983 (6)	5.2 (2)
Ring C				
C(1)	0.3878 (6)	$0 \cdot 243$ (1)	0.6603 (5)	5.3 (3)
C(I2)	0.3322 (6)	0.1272 (9)	0.6617 (5)	5.0 (2)
C(13)	0.2462 (5)	0.1774 (9)	0.6675 (5)	4.2 (2)
C(14)	0.2494 (5)	0.3175 (9)	0.6719 (5)	3.9 (2)
C(15)	$0 \cdot 3360$ (6)	$0 \cdot 3609$ (9)	0.6671 (1)	4.5 (2)
Ring D				
C(16)	0.2834 (5)	0.6014 (9)	0.8123 (5)	4.8 (2)
$\mathrm{C}(17)$	0.3377 (6)	0.6707 (9)	0.8691 (6)	5.0 (2)
$\mathrm{C}(18)$	0.3335 (5)	0.6144 (9)	0.9448 (6)	4.7 (2)
$\mathrm{C}(19)$	0.2715 (5)	0.5001 (8)	0.9359 (5)	4.0 (2)
C(20)	0.2419 (5)	0.4952 (8)	0.8543 (5)	3.5 (2)
Ring E				
C (21)	0.0920 (8)	0.688 (1)	1.0596 (5)	7.5 (3)
$\mathrm{C}(22)$	$0 \cdot 1839$ (8)	0.681 (1)	1.0800 (6)	8.4 (3)
C(23)	0.2157 (6)	0.813 (1)	1.0766 (5)	5.5 (2)
C(24)	0.1443 (6)	0.8968 (8)	1.0553 (5)	4.8 (2)
C(25)	0.0669 (6)	0.821 (1)	1.0453 (5)	$5 \cdot 8$ (2)
Ring F				
C(26)	0.0699 (5)	0.6638 (9)	0.7700 (5)	4.0 (2)
C(27)	0.0246 (5)	0.6001 (9)	0.8324 (5)	4.6 (2)
C(28)	-0.0172 (5)	0.707 (1)	0.8758 (6)	$5 \cdot 2$ (2)
C(29)	0.0034 (5)	0.8313 (9)	0.8382 (5)	4.8 (2)
C(30)	0.0553 (5)	0.8033 (9)	0.7754 (5)	4.7 (2)

$4 \leq 2 \theta \leq 45^{\circ}, 2627$ considered observed $[I \geq 1 \sigma(I)$, $+h,-k, \pm l]$.
Intensities of three standard reflections measured at 30 min intervals showed no significant deviations from mean. Intensities corrected for Lorentz-polarization effects; empirical absorption corrections (transmission factors $79.46-99.84 \%$). Structure solved by direct methods and Fourier techniques. Full-matrix leastsquares refinement, minimizing $\sum(\Delta F)^{2} ; w=1 /\left[\sigma\left(F_{\sigma}\right)\right]^{2}$ with $\sigma\left(F_{o}\right)=\sigma\left(F_{o}^{2}\right) / 2 F_{o}$ and $\sigma\left(F_{o}^{2}\right)=\left[\sigma^{2}(I)+(A)^{2}\right]^{1 / 2} /$ Lp where A, the ignorance factor, is 0.07 , on 2129 reflections with $F^{2} \geq 3 \sigma\left(F^{2}\right)$, index range $h 0 /+16$, $k-10 / 0, l-17 /+17$. Anisotropic thermal parameters for non-H atoms; H atoms in calculated positions included in final structure-factor calculation with $B_{\text {iso }}$ between 3.0 and $7 \cdot 0 \AA^{2}$. A secondary-extinction coefficient refined to a value of $g=8.04 \times 10^{-8}$ $\left\{F_{c}=F_{c} /\left[1+g\left(F_{c}\right)^{2} \mathrm{Lp}\right]\right\} . \quad R=0.028, \quad w R=$ $0.048, S=1.315,(\Delta / \sigma)_{\max }=0.03, \Delta \rho$ in final difference Fourier map within +0.648 and $-0.767 \mathrm{e} \AA^{-3}$. Atomic scattering factors and anomalous-dispersion

Table 2. Selected distances (\AA) and angles $\left({ }^{\circ}\right)$ in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{La}$ with e.s.d.'s in parentheses

$\mathrm{La}(1)-\mathrm{C}(1)$	2.872 (7)	$\mathrm{La}(2)-\mathrm{C}(16)$	2.927 (8)
${ }_{-} \mathrm{C}(2)$	2.829 (7)	-C(17)	2.887 (8)
-C(3)	2.865 (8)	-C(18)	2.874 (8)
-C(4)	2.892 (7)	-C(19)	2.878 (7)
-C(5)	2.905 (8)	-C(20)	2.899 (7)
-C(6)	2.839 (8)	-C(21)	2.767 (9)
-C(7)	2.825 (8)	-C(22)	2.81 (1)
-C(8)	2.792 (9)	-C(23)	2.844 (8)
-C(9)	2.830 (8)	-C(24)	2.827 (7)
-C(10)	2.842 (9)	-C(25)	2.826 (8)
-C(11)	2.823 (9)	-C(26)	2.840 (7)
--C(12)	2.851 (8)	-C(27)	2.819 (8)
-C(13)	2.869 (8)	-C(28)	2.819 (8)
--C(14)	2.826 (8)	-C(29)	2.831 (8)
-C(15)	2.812 (8)	-C(30)	2.840 (8)
-C(16)	3.640 (9)	-C(1)	2.999 (8)
-C(19)	3.404 (8)	-C(2)	3.329 (9)
--C(20)	2.972 (7)	-C(5)	3.671 (9)
- RcA*	2.609 (8)	$-R c D$	2.630 (8)
-Rc B	2.563 (9)	$-R c D$	2.554 (9)
-RcC	2.575 (9)	-RcF	2.561 (8)
RcA-La(1)-RcB	117.3 (2)	$R c D-\mathrm{La}(2)-R c E$	116.5 (2)
RcA-La(1)-RcC	115.7 (2)	$R c D-\mathrm{La}(2)-R c F$	114.5 (3)
RcA-La(1)-C(20)	95.6 (2)	RcD-La(2)-C(1)	96.0 (2)
$\mathrm{RcB}-\mathrm{La}(1)-\mathrm{Rc} C$	116.4 (2)	$R c E-\mathrm{La}(2)-\mathrm{RcF}$	117.5 (3)
RcB-La(1)-C(20)	109.5 (2)	RcE-La(2)-C(1)	110.5 (2)
Rc C-La(1)-C(20)	97.6 (2)	$R c F-\mathrm{La}(2)-\mathrm{C}(1)$	97.5 (3)
$\mathrm{La}(2)-\mathrm{La}(1)-\mathrm{La}(2)$	114.149 (9)	$\mathrm{La}(1)-\mathrm{La}(2)-\mathrm{La}(1)$	114.149 (9)

Fig. 1. The structure of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{La}$ illustrated by three $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{La}$ ($\mu-\eta^{5}: \eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}$) units along a polymeric chain. Atoms are depicted as 40% probability ellipsoids.
terms from International Tables for X-ray Crystallography (1974). Enraf-Nonius (1979) SDP programs.

Discussion. Table 1* contains final atomic positional parameters for the non-H atoms. Selected distances and angles are reported in Table 2. The present structural analysis exhibits two symmetrically independent $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{La}$ molecules in the asymmetric unit. They are bridged through one cyclopentadienyl ring, as illustrated by Fig. 1, to form infinite zigzag polymeric chains parallel to the b axis of the crystal. The chains are spaced at about half a unit-cell length along both the a and the c axis.

[^0]From La-C distances (Table 2) it can be concluded that each La atom is coordinated to three cyclopentadienyl rings in a pentahapto fashion and to one other from a neighbouring molecule though only one carbon atom. Indeed the average $\mathrm{La}-\mathrm{C}$ bond length for the $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ rings is $2.85(8) \AA$ with a maximum deviation from this mean value of only $0.05 \AA$.

This value compares favourably with those reported for several pentahapto-cyclopentadienyl lanthanum complexes (Rogers, Atwood, Emad, Sikora \& Rausch, 1981; Xing-Fu, Eggers, Kopf, Jahn, Fischer, Apostolidis, Kanellakopulos, Benetollo, Polo \& Bombieri, 1985; Spirlet, Rebizant, Apostolidis \& Kanellakopulos, 1987). The interactions $\mathrm{La}(1)-\mathrm{C}(20)$ and $\mathrm{La}(2)-\mathrm{C}(1)$ are only about $0.13 \AA$ greater than the η^{5} bonds. They can therefore be considered as η^{1} bonds. The next closer La-C approaches differ by 0.55 and $0.48 \AA$ respectively for $\mathrm{La}(1)$ and $\mathrm{La}(2)$. The coordination polyhedra about the metal ions can be described as distorted tetrahedra, as shown by the angles subtended at the La atoms (Table 2).

The mean $\mathrm{C}-\mathrm{C}$ bond lengths and the mean $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles in each C_{5} ring agree with known values. The bridging $\mathrm{C}_{5} \mathrm{H}_{5}$ group does not differ from the terminal group with respect to either bond distances and angles.

The first structure reported, by Eggers et al. (1986), for $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{La}$ differs markedly, not only in the cell dimensions and the space group but also in the
molecular geometry and the packing arrangement. In this earlier structure a much wider range of $\mathrm{La}-\mathrm{C}$ distances $[2.560$ (6) to 2.999 (6) \AA] is observed for the η^{5}-cyclopentadienyl ligands. Moreover there are two (instead of one in the present structure analysis) La $\cdots \mathrm{C}$ short contacts between adjacent molecules so that the crystal is described as made of zigzag chains of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{La}\left(\mu-\eta^{5}: \eta^{2}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ units.

References

Eggers, S. H., Hinrichs, W., Kopf, J., Jahn, W. \& Fischer, R. D. (1986). J. Organomet. Chem. 311, 313-323.

Eggers, S. H., Kopf, J. \& Fischer, K. D. (1986). Organometallics, 5, 383-385.
Eggers, S. H., Schultze, H., Kopf, J. \& Fischer, R. D. (1986). Angew. Chem. 98, 631-632.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Hinrichs, W., Melzer, D., Rehwoldt, M., Jahn, W. \& Fischer, R. D. (1983). J. Organomet. Chem. 251, 299-305.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Rogers, R. D., Atwood, J. L., Emad, A., Sikora, D. J. \& Rausch, M. D. (1981). J. Organomet. Chem. 216, 383-392.

Spirlet, M. R., Rebizant, J., Apostolidis, C. \& Kanellakopulos, B. (1987). Acta Cryst. C43, 2322-2324.
Wong, C. H., Lee, T. Y. \& Lee, Y. T. (1969). Acta Cryst. B25, 2580-2587.
Xing-Fu, L., Eggers, S., Kopf, J., Jahn, W., Fischer, R. D., apostolidis, C., Kanellakopulos, B., Benetollo, F., Polo, A. \& Bombieri, G. (1985). Inorg. Chim. Acta, 100, 183-199.

Acta Cryst. (1988). C44, 616-618

Structure of Chloromercury(II) Saccharinate

By G. Jovanovski
Institute of Chemistry, Cyril and Methodius University, Skopje, Yugoslavia
B. Kamenar
Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, PO Box 153, 41001 Zagreb, Yugoslavia
and G. Ferguson and B. Kaitner*
Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

(Received 6 July 1987; accepted 18 November 1987)

Abstract. $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClHgNO}_{3} \mathrm{~S}, M_{r}=418 \cdot 22$, orthorhombic, $\quad P c a 2_{1}, \quad a=20.530(5), \quad b=4.767(2), \quad c=$

[^1]0108-2701/88/040616-03\$03.00
$9.467(2) \AA, V=926.5(8) \AA^{3}, Z=4, D_{m}$ (pycnometrically $)=2.98, \quad D_{x}=3.00 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=$ $0.7107 \AA, \quad \mu=17.11 \mathrm{~mm}^{-1}, \quad F(000)=760$, room temperature, final $R=0.028$ for 818 independent observed reflections. The structure is built up of the discrete molecules. Mercury has digonal characteristic © 1988 International Union of Crystallography

[^0]: * Lists of structure amplitudes, anisotropic thermal parameters, H -atom coordinates, cyclopentadienyl bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44571 (16 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Natural Sciences and Engineering Research Council of Canada International Scientific Exchange Award Visiting Professor. Permanent address as B. Kamenar.

